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Abstract
We have carried out constant pressure ab initio simulations to study the pressure-induced phase
transition of silicon. The diamond to β-Sn phase change under hydrostatic pressure is
successfully observed in the simulation. The transformation is based on a fourfold coordinated
tetragonal intermediate state having the space group I 41/amd . The energy barrier for the
transformation is calculated to be about 0.35 eV/atom. Additionally, we investigate the
influence of nonhydrostatic compressions on the phase transition of silicon and find that up to
20% stress deviations, silicon converts to a β-Sn structure with a reduced transition pressure.
The triaxial compressions cause more reduction in the transition pressure than the uniaxial
compressions. The transformation mechanism is practically identical under both hydrostatic
and nonhydrostatic conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Silicon (Si) systems have a wide range of application in
electronic and photoelectronic devices, and hence they have
been studied extensively for decades. Yet new structures and
properties are still being discovered. The high pressure phases
of crystalline Si are well established: it shows 11 different
solid structures between atmospheric pressure and 45 GPa.
With the application of pressure, Si undergoes a first order
phase transition from the diamond structure to the metallic β-
Sn structure at approximately 12 GPa [1–3]. Under further
compression, β-Sn transforms to the closely related Imma
phase at 13 GPa [4]. Near 16 GPa, the simple hexagonal
(SH) state forms [2–4]. The hexagonal closed packed (HCP)
structure is observed at 42 GPa [2, 3]. Additionally, a phase
Si(VI) intermediated between SH and HCP has been obtained
at 39 GPa [2]. Recently Si(VI) has been identified as an
orthorhombic structure having 16 atoms per unit cell and space
group symmetry Cmca [5]. Upon release of pressure, Si does
not transform back to the diamond structure. Instead the meta-
stable BC8 phase is recovered on slow pressure release from β-
Sn [6] while two tetragonal phases are obtained on very rapid
pressure release [7].

These phase transformations have been successfully
explained from the first principle calculations. However the

methods have been mostly concerned with energy–volume
calculations and the thermodynamic criterion of equal free
energies [8, 9]. Recent developments have made it possible
to observe directly the dynamical aspect of the solid–solid
phase transitions with increasing pressure. Focher et al
[10] employed a first principle constant pressure molecular
dynamics (MD) technique within Parrinello–Rahman (PR)
method [11] and found that Si directly transformed into the SH
phase at 30 GPa. Morishita and Nosé obtained the same first
order phase transition at 26 GPa using the PR method [12]. In
a preliminary study, using an approximate ab initio technique,
we also obtained the formation of a SH state at 29.5 GPa [13].
On the other hand, the diamond to β-Sn phase transformation
was successfully observed in a MD simulation using the
Tersoff potential at 64 GPa [14]. In another MD simulation
using again the Tersoff potential, the diamond to β-Sn phase
transition was reproduced at 60 GPa [15].

Although the high pressure phases of Si were successfully
observed in these studies, the predicted critical pressures
(the meta-stable phase transition pressure) in these direct
MD simulations were much higher than the experimental and
theoretical (the total energy–volume calculation) values of 7–
16 GPa. These overestimated transition pressures imply a high
intrinsic activation barrier for transforming one solid phase
into another in simulations. With particular conditions such
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as finite size of the simulation cell, the lack of any defect
in the simulated structure, the timescale of simulations etc
are considered, such an overestimated transition pressure is
anticipated [10, 14, 15]. On the other hand, the thermodynamic
theorem does not take into account the possible existence of
such an activation barrier separating two structural phases.

These MD simulations provide substantial information
about the diamond to β-Sn phase transformation of Si
but its behavior under nonhydrostatic conditions is still
unclear in spite of a few theoretical calculations that focus
on the influence of the degree of hydrostaticity on the
transition pressure and enthalpy barrier [16–18]. Indeed
studying Si under nonhydrostatic compressions is more
desirable to understand the pressure-induced phase transition
better because pressure in the diamond anvil cell is not
exactly hydrostatic. In this paper, we perform a constant
pressure ab initio technique to shed some light on the
pressure-induced phase transition of Si under hydrostatic and
nonhydrostatic conditions. The diamond to β-Sn phase
transition is successfully reproduced through a simulation with
the application of hydrostatic pressure. The transformation is
due to the orthorhombic modification of the simulation cell
and based on a fourfold coordinated tetragonal intermediate
state having the space group I 41/amd . The activation enthalpy
for this phase change is predicted to be about 0.35 eV/atom.
Under nonhydrostatic compressions we also find the formation
of a β-Sn structure, again up to 20% stress deviations. The
transition pressure, as expected, is noticeably reduced by
changing the degree of hydrostatic compression. Furthermore,
we determine that the transformation mechanism is basically
identical in both hydrostatic and nonhydrostatic conditions.

2. Computational method

We used the first-principles pseudopotentials method within
the density-functional theory(DFT) and the local-density
approximation using the Ceperley–Alder functional [19] for
the exchange–correlation energy. The calculation was carried
out with the ab initio program SIESTA [20] using a linear
combination of atomic orbitals as the basis set, and a norm-
conservative Troullier–Martins Pseudopotential [21]. A split-
valence single-ξ basis set was employed. A uniform mesh
with a plane wave cut-off of 40 Ryd was used to represent
the electron density, the local part of the pseudopotentials,
and the Hartree and the exchange–correlation potential. The
simulation cell consists of 64 atoms with periodic boundary
conditions. We used �-point sampling for the Brillouin zone
integration, which is reasonable for a simulation cell with
64 atoms since the energy difference between the 64 atom
simulation cell with only � point and the 8 atom unit cell
with 108-k points (see below) is less than about 0.03 eV/atom.
The MD simulations were performed using the NPE (constant
number of atoms, constant pressure, and constant enthalpy)
ensemble. The reason for choosing this ensemble is to remove
the thermal fluctuation, which facilitates an easier examination
of the structure during the phase transformation. Pressure was
applied via the method of Parrinello and Rahman [11] and the
structure is equilibrated with a period of 2000 time steps (each

Figure 1. The energy volume curve of the diamond and β-Sn phases
of Si.

time step is one femtosecond (fs)) at each applied pressure. A
fictitious cell mass 900 amu was found to be suitable for these
simulations. We also used the power quenching technique
during the MD simulations. In this technique, each velocity
component is quenched individually. At each time step, if
the force and velocity components have opposite sign, the
velocity component is set equal to zero. All atoms or supercell
velocities (for cell shape optimizations) are then allowed to
accelerate at the next time step.

For the enthalpy calculations, we only considered the
unit cell (8 atoms) for both diamond and β-Sn structures
and the Brillouin zone integration was performed with an
automatically generated 6×6×6 k-point mesh for both phases
following the convention of Monkhorst and Pack [22].

3. Results

3.1. Enthalpy calculations

We first consider the energy–volume calculations and the
thermodynamic criterion of equal free energies to study the
stability of the diamond and β-Sn phases of Si. These
phases are equilibrated at several volumes and their energy–
volume relations are fit to the third order Birch–Murnaghan
equation of state. The computed total energy as a function
of volume is given in figure 1. The relative energy difference
between the diamond and β-Sn phases is 0.28 eV/atom, which
is in agreement with previous DFT calculations of 0.27–
0.28 eV/atom [23, 24].

The relative stability of the different phases of Si at finite
pressure and temperature can be easily determined by a simple
compression of their Gibbs free energies, G = Etot+PV −T S.
Our DFT calculation is performed at zero temperature and
hence the last term, entropic contribution, is neglected, which
leads to the static enthalpy H = Etot + PV , where pressure is
obtained by direct differentiation of the energy volume curves
i.e., P = −dEtot/dV . In figure 2, we plot the computed
enthalpy curve of the diamond and β-Sn phases as a function
of pressure. The crossing of two curves indicates a phase
transition between the two phases. The enthalpy curve of the
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Figure 2. The calculated enthalpy of the diamond and β-Sn
structures. The curves cross around 12.4 GPa, indicating a phase
transition between the two phases.

diamond phase crosses with that of the β-Sn phase around
12.4 GPa, in good agreement with about 7.0–19.0 GPa of the
experimental observations [2, 3] and previous first-principles
calculations [23–27].

From the energy–volume data, the bulk modulus of the
diamond crystal is calculated to be 98.32 GPa, in excellent
agreement with the experimental value of 99 GPa [28] and
other theoretical values [23–27]. For the β-Sn phase, the bulk
modulus is 123 GPa, which is again in good agreement with
the previous first-principles result of 119 GPa [27]. The overall
reasonable agreement for both transition parameters and bulk
properties for Si with the experimental and theoretical results
clearly reflects that the parameters used in the simulations are
reliable and can also be applied to explore the pressure-induced
phase transition of Si using constant pressure simulations.

3.2. Hydrostatic compression

Figure 3 shows the pressure–volume relation obtained through
the constant pressure simulation. Accordingly, the volume
monotonically decreases with increasing pressure and the
diamond structure is still preserved to 120 GPa. As the
pressure is increased from 120 to 130 GPa, the structural
phase transition begins and is accompanied by a sharp
volume drop, which is a characteristic of a first order phase
transition. Owing to the transformation, the diamond structure
converts into a β-Sn structure as shown in figure 4, in
agreement with experiments. Similar to the previous MD
simulations [10, 12–15], the predicted transition pressure in
the present study is considerably larger than the experimental
results of 7–19 GPa. When particular conditions such as the
use of a perfect structure, the size of the simulation etc are
considered in the simulation, such a tendency is generally
expected. Namely, since the simulated structure does not have
any defect, the transformation does not proceed by nucleation
and growth as seen in experiments, but instead it occurs across
the entire simulation cell. Therefore, the system has to cross
a high energy barrier to transform from one phase to another
one and hence an overpressure is required to drive the phase

Figure 3. The pressure–volume curve of Si under hydrostatic and
nonhydrostatic compressions from the dynamical simulations.

Figure 4. The diamond structure, viewed along (a) [001] and
(b) [011]-directions. The β-Sn structure formed at 130 GPa under
hydrostatic pressure, viewed along (c) [001] and (d) [011]-directions
of the diamond structure.

transformation. This behavior is analogous to superheating
in MD simulations. Of course, such a high critical pressure
produces transformation parameters that cannot be comparable
with experiments or enthalpy calculations that do not take into
account the possible existence of such an activation barrier
separating the two structural phases.
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Figure 5. The time evolution of the simulation cell lengths and
angles at 130 GPa under hydrostatic pressure.

We next study the modification of the simulation cell to
have a clear atomic level picture of the phase transformation.
The variation of the simulation cell lengths and angles at
130.0 GPa as a function of MD time step is shown in
figure 5. The simulation cell is initially oriented such
that its lattice vectors A, B, and C are along the [100],
[010] and [001] directions, respectively. The magnitude
of these vectors is plotted in the figure. Accordingly, the
simulation cell undergoes an orthorhombic distortion with a
simultaneous expansion along the [010] and [001] directions
and a contraction along the [100] direction and with no
change in the simulation cell angles. The orthorhombic
adaptation during the phase change is indeed different from
our expectation of the tetragonal modification of the simulation
cell, but a close analysis of the structure reveals that, in spite
of the orthorhombic modification of the simulation cell (64
atoms), the unit cell of the structure during the phase change
does indeed have a tetragonal symmetry and its lattice vectors
are related to the simulation cell vectors by following relations:
a = (B − C)/4, b = (B + C)/4, and c = A/2.

In order to see how the symmetry changes during the
phase transformation, we analyze the structure each MD time
step using the KPLOT program [29], which provides detailed
information about space group, cell parameters and atomic
positions of a given structure. For the symmetry analysis,
we use 0.1 Å, 2◦, and 0.7 Å tolerances for bond lengths,
bond angles and interplanar spacing, respectively. At MD step
49, we successfully identify a fourfold coordinated tetragonal
intermediate state within the I 41/amd symmetry. It should
be noted here that the space group of this phase is the same
as that of β-Sn. The lattice constant of this state is a =
b = 3.39 Å and c = 4.25 Å. At later time steps, a and b
gradually increase while c decreases. At MD step 68, a sixfold
coordinated β-Sn phase with the lattice parameters a = b =
4.37 Å and c = 2.3 Å forms. These results suggest that the
phase transformation from diamond to the high pressure β-
Sn structure can easily be pictured in terms of a tetragonal

Figure 6. The minimum enthalpy barrier.

(along the principle axes) distortion of the unit cell. Although
the transition is first order, there is an easy transition path that
involves co-operative bond formation and lengthening, with no
covalent bond breaking.

In previous classical MD simulations [14, 15] (but not
quantum mechanical simulations [10, 11, 13]), the diamond
to β-Sn phase transformation was successfully observed. In
those studies [14, 15], during the phase transformation, two
of the simulation cell lengths were expanded while the third
one was contracted, similar to what we observe in the present
study. The simulation cell lengths and angles, however, showed
noticeable fluctuations, indicating small shear deformations
during the phase transition and hence slight deviations from
the ideal β-Sn structure [14, 15]. Therefore, the diamond to
β-Sn phase transformation was associated with a monoclinic
or triclinic modification of the simulation cell in the previous
simulations, in a contrast to the orthorhombic adaption of the
simulation cell in the present study, which produces a perfect
β-Sn structure. In spite of these small discrepancies, the
behavior of the simulation cell indicates that the transition
mechanism observed in the previous simulations is practically
similar to what has been observed in the present study.

We next calculate the activation enthalpy barrier of this
simple phase transition. We prepare a series of intermediate
structures that have a/c ratios between the limiting values
of 0.7 (diamond) and 1.96 (β-Sn). For each fixed a/c
ratio, we study the energy of these intermediate states as
a function of volume and then calculate their enthalpy.
Figure 6 shows the minimum enthalpy difference as a function
of a/c ratio at the static transition pressure of 12.4 GPa.
Accordingly the enthalpy barrier between the two structures
is about 0.35 eV/atom, which lies between the previously
calculated first principles values of 0.2 eV/atom [14] and about
0.5 eV/atom [18] but close to 0.3 eV/atom [14] predicted
using the Tersoff potential.

3.3. Nonhydrostatic compressions

The degree of the hydrostaticity in experiments is determined
by the efficiency of the pressure-transmitting medium. At
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high pressures, the pressure-transmitting medium solidifies,
resulting in strong nonhydrostatic effects. Even in the low
pressure regime, pressure in the diamond anvil cell is not
exactly hydrostatic. Consequently studying materials under
nonhydrostatic conditions in simulations might be a more
realistic approach to improving our understanding of their
structural phase transitions and physical properties at high
pressures. In this section, we investigate the influence
of the degree of the hydrostatic compression on the phase
transformation of Si using the Parrinello-Rahman and the
power quenching techniques. We consider five different
nonhydrostatic conditions and label them as case-I (σx =
0.95P , σy = 0.9P and σz = P , where P is the applied
external pressure), case-II (σx = 0.9P , σy = 0.95P and
σz = P), case-III (σx = 0.9P , σy = P and σz = 0.9P),
case-IV (σx = 0.9P , σy = 0.9P and σz = P) and
case-V (σx = 0.8P , σy = 0.9P and σz = P). The
volume change under these loading conditions is represented
in figure 3. Accordingly, Si shows practically identical
equations of state under both hydrostatic and nonhydrostatic
compressions but the critical pressure is notably reduced in the
case of nonhydrostatic conditions (60 GPa for case-I and II,
70 GPa for case-III and IV and 40 GPa for case-V). For
all cases studied, however, we find no indication of a new
phase transformation in Si and instead the diamond structure
converts into a β-Sn state. As expected, the transition volume
(volume change) and the density of the final β-Sn phase
are found to be sensitive to the transition pressure: as the
transition pressure decreases, Si transforms into a more open
β-Sn structure with a larger volume drop. When these cases
are carefully analyzed, we see that the triaxial compressions
(all stress components have different a value as in the case-I
and II) cause more reduction in the transition pressure than the
uniaxial stresses (two stress components have the same value
while the third one has a different value as in the case-III and
case-IV). This behavior might be explained by the tendency
of the structure to adopt an orthorhombic modification during
the phase transformation into β-Sn. Furthermore, although
the nonhydrostatic compressions break the symmetry of the
system even before the phase transition to β-Sn occurs (which
is indeed the main reason for the reduced transition pressure),
the mechanism obtained in these nonhydrostatic environments
(see figures 7) is unexpectedly similar to what has been
determined in the perfect hydrostatic condition. Therefore,
we conclude that Si transforms into a β-Sn phase up to 20%
deviation and the diamond to β-Sn transformation mechanism
is independent of the degree of nonhydrostatic conditions in
the simulations. However, we need to underline here that
these conclusions are for the defect free silicon structure and
such an ideal crystal might favor the formation of the β-
Sn phase and produce an identical transformation path under
both hydrostatic and nonhydrostatic conditions. In reality,
phase transformations in experiments proceed by nucleation
and growth at defects. Therefore, further studies are certainly
needed to clearly understand the role of the stress deviations,
defects, and their correlations on phase transformations.

Figure 7. The time evolution of the simulation cell lengths under
nonhydrostatic compressions.

4. Conclusions

We have studied the behavior of Si under both hydrostatic
and nonhydrostatic compression. With the application of
hydrostatic pressure, Si transforms into the β-Sn structure.
The transformation is due to the orthorhombic modification
of the simulation cell and is based on a fourfold coordinated
tetragonal state. The energy barrier for the transformation
is about 0.35 eV/atom. Under nonhydrostatic conditions,
we also find the formation of the β-Sn phase up to 20%
stress deviation, but the transition pressure is significantly
reduced. Additionally it is found that the transformation
mechanism under nonhydrostatic cases is similar to what has
been determined under pure hydrostatic compression.
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